Explicit Matrices with the Restricted Isometry Property: Breaking the Square-Root Bottleneck
نویسنده
چکیده
Matrices with the restricted isometry property (RIP) are of particular interest in compressed sensing. To date, the best known RIP matrices are constructed using random processes, while explicit constructions are notorious for performing at the “square-root bottleneck,” i.e., they only accept sparsity levels on the order of the square root of the number of measurements. The only known explicit matrix which surpasses this bottleneck was constructed by Bourgain, Dilworth, Ford, Konyagin and Kutzarova in [5]. This chapter provides three contributions to further the groundbreaking work of Bourgain et al.: (i) we develop an intuition for their matrix construction and underlying proof techniques; (ii) we prove a generalized version of their main result; and (iii) we apply this more general result to maximize the extent to which their matrix construction surpasses the square-root bottleneck.
منابع مشابه
A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property
In this note, we prove that matrices whose entries are all 0 or 1 cannot achieve good performance with respect to the Restricted Isometry Property (RIP). Most currently known deterministic constructions of matrices satisfying the RIP fall into this category, and hence these constructions suffer inherent limitations. In particular, we show that DeVore’s construction of matrices satisfying the RI...
متن کاملRandom Subdictionaries and Coherence Conditions for Sparse Signal Recovery
The most frequently used condition for sampling matrices employed in compressive sampling is the restricted isometry (RIP) property of the matrix when restricted to sparse signals. At the same time, imposing this condition makes it difficult to find explicit matrices that support recovery of signals from sketches of the optimal (smallest possible) dimension. A number of attempts have been made ...
متن کاملOn the square root of quadratic matrices
Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.
متن کاملExplicit constructions of RIP matrices and related problems
We give a new explicit construction of n × N matrices satisfying the Restricted Isometry Property (RIP). Namely, for some ε > 0, large N and any n satisfying N1−ε ≤ n ≤ N , we construct RIP matrices of order k ≥ n and constant δ−ε. This overcomes the natural barrier k = O(n) for proofs based on small coherence, which are used in all previous explicit constructions of RIP matrices. Key ingredien...
متن کاملWhat Is... a Rip Matrix?
RIP matrices– shorthand for matrices which satisfy the restricted isometry property– appeared as a byproduct of Compressed Sensing; a method discovered by D. Donoho, E. Candès and T. Tao in 2004 with several applications in computer science. Besides their real world application, RIP matrices are interesting mathematical objects because, on the one hand, a random matrix has a negligible probabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1403.3427 شماره
صفحات -
تاریخ انتشار 2014